
Component Infrastructure for Managing
Performance Data and Runtime Adaptation of

Parallel Applications

Li Li,1 Boyana Norris,1 Henrik Johansson,2 Lois Curfman McInnes,1 and
Jaideep Ray3

1 Argonne National Laboratory, Argonne, IL, USA,
[likli,norris,mcinnes]@mcs.anl.gov

2 Department of Information Technology, Uppsala University, Sweden
henrik.johansson@it.uu.se

3 Sandia National Laboratories, Livermore, CA, USA,
jairay@sandia.gov

Abstract. Component-based software engineering (CBSE) has been gain-
ing popularity in parallel scientific computing, facilitating the creation
and management of large multidisciplinary, multideveloper application
codes and providing opportunities for improved performance and numer-
ical accuracy. The CBSE approach enables automation of traditionally
manual application configuration and tuning tasks. In addition to en-
capsulating data and functions, components enable the encapsulation of
nonfunctional properties (metadata) whose values affect the performance
of a component. By first automatically collecting performance data and
associated metadata, and then analyzing it to classify different meth-
ods, we can automate the selection of the best-performing component
instance among many functionally equivalent implementations. To sup-
port this adaptivity, we have designed a set of interfaces and components
for managing databases for performance and system information, anal-
ysis, and runtime control. We describe our initial implementations of
these interfaces and discuss their use in selecting linear solvers in inex-
act Newton methods for nonlinear partial differential equations (PDEs)
and dynamic selection of the most appropriate partitioning strategy at
runtime in combustion applications.

1 Introduction

As computational science progresses toward ever more realistic multiphysics and
multiscale applications, no single research group can effectively develop, select, or
tune all of the components in a given application, and no single tool, solver, or so-
lution strategy can seamlessly span the entire spectrum efficiently. Component-
based software engineering approaches help manage some of the complexity of
developing such large scientific applications. The Common Component Architec-
ture (CCA) [3,6] defines a component software engineering approach specifically
targeted at high-performance computing (HPC) applications. The CCA, like

2

Analysis Infrastructure
Performance monitoring,
problem/solution characterization,
and performance model building

Control Infrastructure
Interpretation and execution of control laws to
modify an application’s behavior

Performance
Databases

(historical & runtime)

Interactive Analysis
and Model Building

Substitution
Assertion
Database

Instrumented
Component

Application Cases

Control System
(parameter changes and
component substitution) Scientist can

provide decisions
on substitution and
reparameterization

CQoS-Enabled
Component Application

Component A
Component B
Component C

Component
Substitution Set

Scientist can
analyze data
interactively

Fig. 1. CQoS middleware organization.

other component and service specifications, provides support only for basic ma-
nipulation of components, such as repositories, instantiation, connection, and
execution. Common interfaces enable easy access to suites of independently de-
veloped algorithms and implementations, and dynamic composability facilitates
switching among different implementations statically or during runtime. The
challenge then becomes how to make sound choices from among the available
implementations and parameters, with suitable tradeoffs among performance,
accuracy, mathematical consistency, and reliability. Such choices are important
both for the initial composition and configuration of an application and for adap-
tive control during runtime.

To at least partially automate the process of characterizing the performance
of component applications and selecting and configuring particular implemen-
tations, we have introduced the concept of computational quality of service
(CQoS) [20] for scientific applications. CQoS expands on traditional QoS ideas
by considering additional application-specific metrics, referred to as metadata,
that enable the characterization of the performance of high-performance com-
ponents. Before automating the selection of component instances, however, one
must be able to collect and analyze performance information and the related
metadata.

The conceptual organization of the middleware necessary to support auto-
mated configuration and dynamic adaptation of component applications is illus-
trated in Figure 1.

In the remainder of this paper we focus on the performance database in-
frastructure portion of the CQoS architecture. We present CCA interfaces and

3

components that support the collection and management of performance data
and associated metadata and their use in two different parallel application con-
texts.

2 Database Interfaces and Components

The database interface design is intended to support the management and analy-
sis of performance and application metadata, so that the mapping of

Fig. 2. Database interfaces.

a problem to an implementation that can po-
tentially yield the best performance can be
accomplished statically or at runtime. Fig-
ure 2 shows the main interfaces and some of
their methods.

We introduce two types of components
for storing and querying CQoS performance
data and metadata. The database compo-
nent provides general-purpose interfaces for
storing and accessing data in a physical
database. The comparator interfaces com-
pare and/or match properties of two prob-
lems under user-specified conditions.

2.1 Comparator Components

There are three sets of interfaces associated
with a comparator component, Parameter,
ParameterSet, and Comparator. A Parame-
ter captures a single property of a problem,
e.g., a scalar representing mesh quality. A pa-
rameter is described by its name, data type,
and value. It is associated with a table in the
physical database. The Parameter interfaces
also support comparisons against another peer parameter under user-specified
conditions. A ParameterSet represents a group of related parameters, e.g., a set
of parameters that characterize an adaptive grid, or a set of scalar or boolean
linear system properties. Using the ParameterSet interfaces, users can create
and manage parameter set members. When selecting a solution method, the
time-dependent problem/system properties are described as one or more Pa-
rameterSets. The user or an automated adaptive heuristic can then match the
formatted parameter sets to a database to determine the best known solution
method or configuration. A Comparator defines the rules to compare two sets of
parameters. For instance, a Comparator can determine the closeness of two sets
of parameters, i.e., whether they are within ε of each other.

4

2.2 Database Components

There are two classes of interfaces associated with a database component, DB
and Outcome. The application connects to a database component by using the
DB port, which handles (potentially remote) database connections, queries, and
storage and retrieval of parameters and parameter sets. The DB interface also
supports the query of experimental runs having parameter sets that satisfy user-
specified conditions (e.g., limiting the parameter set to a range of values). The
Outcome interface supports transformation of database results obtained by using
a DB query to user-readable format, as well as access to the individual data
elements.

The results of exhaustive analyses of properties for a number of problem in-
stances can also be stored in the database using the database interfaces. Before
the execution of an application, application-specific Comparator implementa-
tions help match the initial problem properties and system states against histor-
ical information to find a good initial solution method. During runtime, time-
dependent application and system characteristics are captured in metadata pa-
rameter sets. A runtime Comparator implementation can dynamically match the
metadata against a lightweight runtime database to determine the best known
method corresponding to the current application state.

3 Application Use Cases

We have employed the database components described in Section 2 in two dif-
ferent application contexts.

3.1 Flow in a Driven Cavity

The first parallel application that motivates and validates this work is driven
cavity flow [7], which combines lid-driven flow and buoyancy-driven flow in a
two-dimensional rectangular cavity. The resulting system of nonlinear PDEs has
the form

f(u) = 0, (1)

where f : Rn → Rn. We have selected this model problem because it has prop-
erties that are representative of many large-scale, nonlinear PDE-based appli-
cations in domains such as computational aerodynamics [2], astrophysics [9],
and fusion [27]. We use fully implicit Newton-Krylov methods (see, e.g., [18])
to solve Equation (1) through the two-step sequence of (approximately) solving
the Newton correction equation

(f ′(uk−1)) δuk = −f(uk−1),

in the sense that the linear residual norm ||f ′(uk−1))δuk+f(uk−1)|| is sufficiently
small and then updating the iterate via uk = uk−1 + δuk.

Our intent is to use the performance database components described in Sec-
tion 2 to implement adaptive linear solver components, such as those described

5

in [4, 17, 19]. Figure 3 shows a Ccaffeine [1] GUI snapshot of the database and
comparator components used to manipulate the performance information for the
driven cavity application.

Fig. 3. Database and comparator components used in the driven cavity application.

The performance data is stored in the database by using the MetDB compo-
nent, which provides the MetaDB port. Two components provide the Compara-
tor port: the PropertyComparator and the PerfComparator. The PropertyCom-
parator component is used to match a particular application instance to one
for which we have stored performance information in the database. Currently
our matching algorithm uses the matrix metrics computed with Anamod [8].
The PerfComparator component analyzes the application-specific performance
information to determine the best performing configuration, currently using a
least squares approach.

3.2 Combustion

The Computational Facility for Reacting Flow Science project [21] has developed
a CCA toolkit for simulating flames on block-structured adaptive meshes. These
simulations start with a coarse and uniform grid. The grid is then recursively
refined in areas where the accuracy is too low, creating a dynamic grid hierarchy
that always conforms to the maximum acceptable error.

For efficient use of the toolkit on parallel computers, the dynamic resource
allocation makes it necessary to repeatedly repartition and redistribute the grid
hierarchy over the participating processors. The partitioning process must not
only take the computations and the CPU performance into account, but also
all other factors that contribute to the run-time: communication volume, syn-
chronization delays, data migration between partitions and the performance and
utilization of the interconnect. Thus, to minimize the run-time, the current state
of the application and the hardware must both be considered. This is non-trivial
because the basic conditions for how to allocate hardware resources may change
dramatically during run-time.

6

No single partitioning algorithm is the best choice for all conditions [24]. In-
stead, good-performing partitioning algorithms need to be dynamically selected
and invoked during run-time by a meta-partitioner [12, 13, 25, 26]. The meta-
partitioner is a framework that automatically selects, configures, and invokes
the best predicted partitioning algorithm with respect to the current applica-
tion and computer state.

At the core of the meta-partitioner is a compilation of performance data for
a large number of partitioning algorithm and SAMR application states. Each of
the application states has been carefully characterized using metrics like amount
of refined area, aspect ratio, density of patches, and patch sizes. During run-
time, the current application state is compared against the characteristics of the
application states used to collect the the performance data. The most similar
stored application state is recorded. Given the most similar application state,
the partitioning algorithm with the best performance is selected and invoked.
The workflow of the meta-partitioner is illustrated in Figure 4.

Fig. 4. Sample scenario showing the meta-partitioner role in the workflow of an appli-
cation.

Without an accurate matching of the current and stored application states,
the stored partitioning performance data will not be valid for the current ap-
plication state. This can potentially result in the selection of bad-performing
partitioning algorithms.

The matching of the current and the stored application state is performed
in the newly developed CharacterizationComparator component. The charac-
teristic data for all application states are stored in the database by using the
MetaDB component. At each re-partitioning, the characteristics of the current ap-
plication state are sent to the CharacterizationComparator. A weighted least
square sum is computed for each combination of current and stored application
characteristics. Accessing and using the MetaDB during run-time has several
benefits. The implementation of the matching is can be made less involved. It
is also easy to expand the MetaDB with new application states. The accuracy
of the matching is heavily influenced by the weights used for the least square

7

sum. Using the MetaDB, these weights can be easily tuned for the most accurate
matching.

4 Related Work

Adaptive software for scientific computing is an area of emerging research, as
evidenced by numerous recent projects and related work [5,8,10,14–16,23,28,30–
33]. Many approaches to addressing different aspects of adaptive execution are
represented in these projects, from compiler-based techniques to development of
new numerical adaptive algorithms.

Unlike these efforts, our approach is specifically targeted at large-scale paral-
lel computations and relies on high-level interface specifications and technologies
tailored for scientific computing. In designing our CQoS interfaces and middle-
ware components, we rely on the existing high-performance infrastructure pro-
vided by the CCA, in which multiple component implementations conforming to
the same external interface standard are interoperable, and the runtime system
ensures that the overhead of component substitution is negligible.

A substantial number of tools for performance analysis exist, including TAU
and PerfExplorer [11], Prophesy [29], SvPablo [22], and others. Each tool de-
fines its own performance data representation and storage, from custom ASCII
representations or XML to SQL, DB2, or Oracle databases. To our knowledge,
the research discussed in this paper is the first attempt to provide language-
independent component interfaces and corresponding implementations for per-
formance database manipulation, specifically targeting parallel scientific appli-
cations. This approach supports multiple underlying representations and does
not preclude the use of existing non-component performance analysis tools.

5 Conclusions and Future Work

We have introduced our prototype component software for managing perfor-
mance data and associated metadata for high-performance component appli-
cations. These components are part of larger CQoS infrastructure, which has
the goal of enabling automated component selection and (re)configuration of
component-based scientific codes.

This paper focused mainly on the components that provide support for stor-
ing and manipulating performance information and associated metadata. There
is also related ongoing work on the analysis infrastructure for identifying per-
formance bottlenecks and deriving performance metrics that can be used later
to identify configuration parameters and component instances that satisfy given
performance or quality requirements.

Acknowledgments

We thank all members of the CCA Forum for stimulating discussions on high-
performance scientific software. This work was supported by the Mathematical,

8

Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357.

References

1. Allan, B., Armstrong, R., Lefantzi, S., Ray, J., Walsh, E., Wolfe, P.: Ccaffeine – a
CCA component framework for parallel computing. http://www.cca-forum.org/
ccafe/ (2003)

2. Anderson, W.K., Gropp, W.D., Kaushik, D.K., et al: Achieving high sustained
performance in an unstructured mesh CFD application. In: SC99 (1999)

3. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren,
T.L., Damevski, K., Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz, D.S.,
Kohl, J.A., Krishnan, M., Kumfert, G., Larson, J.W., Lefantzi, S., Lewis, M.J.,
Malony, A.D., McInnes, L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J.,
Shende, S., Windus, T.L., Zhou, S.: A component architecture for high-performance
scientific computing. International Journal of High-Performance Computing Ap-
plications pp. 215–229 (2006)

4. Bhowmick, S., Kaushik, D., McInnes, L., Norris, B., Raghavan, P.: Parallel adaptive
solvers in compressible PETSc-FUN3D simulations. In: Proceedings of the 17th
International Conference on Parallel CFD, Aug 2005 (2005)

5. Bramley, R., Gannon, D., Stuckey, T., Villacis, J., Balasubramanian, J., Akman, E.,
Berg, F., Diwan, S., Govindaraju, M.: The Linear System Analyzer. In: Enabling
Technologies for Computational Science. Kluwer (2000)

6. CCA Forum: CCA Forum homepage. http://www.cca-forum.org/ (2008)
7. Coffey, T., Kelley, C., Keyes, D.: Pseudo-transient continuation and differential

algebraic equations. SIAM J. Sci. Comp 25, 553–569 (2003)
8. Dongarra, J., Eijkhout, V.: Self-adapting numerical software for next generation

applications. International Journal of High Performance Computing Applications
17, 125–131 (2003), also LAPACK Working Note 157, ICL-UT-02-07

9. Fryxell, B., Olson, K., Ricker, P., et al: FLASH: An adaptive-mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. (2000)

10. Houstis, E.N., Catlin, A.C., Rice, J.R., Verykios, V.S., Ramakrishnan, N., Houstis,
C.E.: A knowledge/database system for managing performance data and recom-
mending scientific software. ACM Transactions on Mathematical Software 26(2),
227–253 (2000)

11. Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Scalable, automated perfor-
mance analysis with tau and perfexplorer. In: Parallel Computing (ParCo). Aachen,
Germany (2007)

12. Johansson, H.: Performance Characterization and Evaluation of Parallel PDE
Solvers. Licentiate, University of Uppsala, Library, Box 510, SE-751, 20 Uppsala,
Sweden (Nov 2006)

13. Johansson, H., Steensland, J.: A performance characterization of load balancing
algorithms for parallel SAMR applications. Tech. Rep. 2006-047, Department of
Information Technology, Uppsala University, Sweden (2006), available at http:

//www.it.uu.se/research/reports/2006

14. Keahey, K., Beckman, P., Ahrens, J.: Ligature: A component architecture for high-
performance applications. International Journal of High-Performance Computing
Applications (14) (2000)

9

15. Liu, H., Parashar, M.: Enabling self-management of component based high-
performance scientific applications. In: Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing. IEEE Computer Society
Press (July 2005)

16. McCracken, M.O., Snavely, A., Malony, A.: Performance modeling for dynamic
algorithm selection. In: Proc. of the International Conference on Computational
Science (ICCS’03), LNCS. vol. 2660, pp. 749–758. Springer, Berlin (2003)

17. McInnes, L.C., Norris, B., Bhowmick, S., Raghavan, P.: Adaptive sparse linear
solvers for implicit CFD using Newton-Krylov algorithms. In: Proceedings of the
Second MIT Conference on Computational Fluid and Solid Mechanics, June 17-20,
2003, Cambridge, MA. vol. 2, pp. 1024–1028. Elsevier (2003)

18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer-Verlag (1999)
19. Norris, B., McInnes, L., Veljkovic, I.: Computational quality of service in paral-

lel CFD. Argonne National Laboratory preprint ANL/MCS-P1283-0805 (2005),
submitted to Proc. of the 17th International Conference on Parallel CFD, Aug
2005

20. Norris, B., Ray, J., Armstrong, R., McInnes, L.C., Bernholdt, D.E., Elwasif, W.R.,
Malony, A.D., Shende, S.: Computational quality of service for scientific compo-
nents. In: Proceedings of International Symposium on Component-Based Software
Engineering (CBSE7), Edinburgh, Scotland (2004)

21. (PI), H.N.: Computational facility for reacting flow science (CFRFS). http://www.
ca.sandia.gov/cfrfs/ (2008)

22. de Rose, L.A., Reed, D.A.: SvPablo: A multi-language architecture-independent
performance analysis system. In: ICPP ’99: Proceedings of the 1999 International
Conference on Parallel Processing. p. 311. IEEE Computer Society, Washington,
DC, USA (1999)

23. Sosonkina, M.: Runtime adaptation of an iterative linear system solution to dis-
tributed environments. In: Applied Parallel Computing, PARA’2000. Lecture Notes
in Computer Science, vol. 1947, pp. 132–140. Springer-Verlag, Berlin (2001)

24. Steensland, J.: Efficient partitioning of dynamic structured grid hierarchies. Ph.D.
thesis, University of Uppsala, Library, Box 510, SE-751, 20 Uppsala, Sweden (2002)

25. Steensland, J., Chandra, S., Parashar, M.: An application-centric characterization
of domain-based SFC partitioners for parallel SAMR. IEEE Transactions on Par-
allel and Distributed Systems 13(12), 1275–1289 (Dec 2002)

26. Steensland, J., Thuné, M., Chandra, S., Parashar, M.: Characterization of domain-
based partitioners for parallel SAMR applications. In: Proceedings of the IASTED
International Conference Parallel and Distributed Computing and Systems. ACTA
Press (2000)

27. Tang, X.Z., Fu, G.Y., Jardin, S.C., et al: Resistive magnetohydrodynamics simu-
lation of fusion plasmas. Tech. Rep. PPPL-3532, Princeton Plasma Physics Labo-
ratory (2001)

28. Tapus, C., Chung, I.H., Hollingsworth, J.K.: Active Harmony: Towards automated
performance tuning. In: Proceedings of SC02 (2002)

29. Taylor, V., Wu, X., Stevens, R.: Prophesy: An infrastructure for performance anal-
ysis and modeling of parallel and grid applications. SIGMETRICS Perform. Eval.
Rev. 30(4), 13–18 (2003)

30. Vetter, J.S., Worley, P.H.: Asserting performance expectations. In: Proceedings of
SC02 (2002)

31. Vuduc, R., Demmel, J., Bilmes, J.: Statistical models for empirical search-based
performance tuning. International Journal of High Performance Computing Appli-
cations 18(1), 65–94 (February 2004)

10

32. Whaley, R.C., Petitet, A.: Minimizing development and main-
tenance costs in supporting persistently optimized BLAS. Soft-
ware: Practice and Experience 35(2), 101–121 (February 2005),
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps

33. Zhang, K., Damevski, K., Venkatachalapathy, V., Parker, S.: SCIRun2: A CCA
framework for high performance computing. In: Proceedings of the 9th Interna-
tional Workshop on High-Level Parallel Programming Models and Supportive En-
vironments (HIPS 2004). IEEE Press, Santa Fe, NM (April 2004), to appear

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

